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Turing’s distinction

Mathematical reasoning [when considered in the restrictive sense of determining
the truth or falsity of propositions] may be regarded rather schematically as the
exercise of a combination of two faculties, which we may call intuition and
ingenuity. The activity of the intuition consists in making spontaneous
judgments which are not the result of conscious trains of reasoning [...]
The exercise of ingenuity in mathematics consists in aiding the intuition
through suitable arrangements of propositions, and perhaps
geometrical figures or drawings. It is intended that when these are really well
arranged the validity of the intuitive steps which are required cannot seriously be
doubted. The parts played by these two faculties differ of course from
occasion to occasion, and from mathematician to mathematician. This
arbitrariness can be removed by the introduction of a formal logic. The
necessity for using the intuition is then greatly reduced by setting down formal
rules for carrying out inferences which are always intuitively valid. When
working with a formal logic, the idea of ingenuity takes a more definite
shape. In general a formal logic, will be framed so as to admit a considerable
variety of possible steps in any stage in a proof. Ingenuity will then determine
which steps are the more profitable for the purpose of proving a
particular proposition. (Turing 1939)

First analogy: Dual-process accounts of human reasoning distinguish between two kinds
of general thinking: one unconscious, fast and intuitive which has similarities with
perception, the other conscious, slow and reflective superseding hypothetical
thinking and deduction (Evans and Stanovich 2013)



An informal example

Statement: If a number is smaller than another number, then the square of the former is
smaller than the square of the latter:

∀a, b ∈ N(a < b → a2 < b2)

Proof: In ordinary mathematical language, we could say that a proof of this statement is
elementarily obtained by the application of the (axiomatic) definition of “being
smaller than”: a is smaller than b means that there is some number c > 0 such that
a + c = b.

Therefore, we can write (a + c)2 = b2 and hence

a2 + c2 + 2ac = b2. *

Since we are assuming c > 0 it is easy to see that c2 + 2ac > 0. **

But this in turn means that there exists a positive number k = c2 + 2ac such that
a2 + k = b2 and thus we have found that a2 < b2, again by the definition of “being
smaller than”.



More formally, the statement above can be given a pedantic step-by-step proof by application
elementary rules of logic whose validity is almost impossible to question.

∀xP (x)
(1) , for any α

P (α)

∃xP (x)
(2) , for some α

P (α)
P (x)

(3) , for x free in P
∀xP (x)
P (α)

(4) , for x a fresh variable
∃xP (x)

P → ∃xQ(x)
(5)

∃x(P → Q(x))
∃x(P → Q(x))

(6)
P → ∃xQ(x)
P ↔ Q

(7)
P → Q
P ↔ Q

(8)
Q ↔ P

P → Q ∧ R
(9)

P → R ∧Q
P → Q ∧ R Q → S

(10) , possibly R = ∅
P → S ∧ R

AXIOM

∀x, y(x < y ↔ ∃z(z > 0 ∧ x+ z = y))
(1)

∀y(a < y ↔ ∃z(z > 0 ∧ a+ z = y))
(1)

a < b ↔ ∃z(z > 0 ∧ a+ z = b)
(10)

a < b → ∃z(z > 0 ∧ a+ z = b)
(5)

∃z(a < b → (z > 0 ∧ a+ z = b))
(2)

a < b → c > 0 ∧ a+ c = b
(9)

a < b → a+ c = b ∧ c > 0

THEOREM 1 *

∀x, y, z(x+ y = z → x2 + y2 + 2xy = z2)
(1)

∀y, z(a+ y = z → a2 + y2 + 2ay = z2)
(1)

∀z(a+ c = z → a2 + c2 + 2ac = z2)
(1)

a+ c = b → a2 + c2 + 2ac = b2
(10)

a < b → a2 + c2 + 2ac = b2 ∧ c > 0
(9)

a < b → c > 0 ∧ a2 + c2 + 2ac = b2

THEOREM 2 **

∀x, y(x > 0 → x2 + y > 0)
(1)

∀y(c > 0 → c2 + y > 0)
(1)

c > 0 → c2 + 2ac > 0
(10)

a < b → (c2 + 2ac > 0 ∧ a2 + c2 + 2ac = b2)
(4)

∃z(a < b → (z > 0 ∧ a2 + z = b2))
(6)

a < b → ∃z(z > 0 ∧ a2 + z = b2)

AXIOM

∀x, y(x < y ↔ ∃z(z > 0 ∧ x+ z = y))
(1)

∀y(a2 < y ↔ ∃z(z > 0 ∧ a2 + z = y))
(1)

a2 < b2 ↔ ∃z(z > 0 ∧ a2 + z = b2)
(8)

∃z(z > 0 ∧ a2 + z = b2) ↔ a2 < b2
(7)

∃z(z > 0 ∧ a2 + z = b2) → a2 < b2
(10)

a < b → a2 < b2
(3)

∀b(a < b → a2 < b2)
(3)

∀a, b(a < b → a2 < b2)

CONCLUSION



Mechanizing the process 1

In general, the proof of any mathematical statement can be arranged as a formal proof,
thus taking a structure similar to that of a tree, where the leaves are the premises of the
argument and the root is the conclusion of the argument. Starting from the bottom of the
tree, the first node (the root of the tree) contains the sentence we want to prove, and each
line above it follows directly from one or more premises by application of a rule of logic. At
the very top of the tree (at the leaves) there are those sentences which can be taken to be
true without proof: either axioms or previously established theorem. In this way the appeal
to intuition is confined to the strictly necessary (axioms and rules of logic) and ingenuity
takes a very precise form.



Mechanizing the process 2

Notice that any previously derived theorem, by definition, can in turn be the root of
another tree. With plenty of patience we can reduce to the situation in which our tree has
only axioms as leaves.

Now, since each rule of logic can use only a finite number of premises, a machine (or a
human with plenty of time and patience), can just enumerate all the possible premises of a
statement and, starting from the bottom, build all the possible trees having such statement
as root. It follows that we can program a machine which subsequently builds all the
possible trees having as root the chosen statement such that each node is obtained by
application of one of the rules. If we ask it to stop whenever it finds a tree having only
axioms as leaves, then we have a proof-finding machine!



Gödelian objections

We are always able to obtain from the rules of a formal logic a method of
enumerating the propositions proved by its means. We then imagine that all proofs
take the form of a search through this enumeration for the theorem for which a
proof is desired. In this way ingenuity is replaced by patience. (Turing 1939)

It was believed in the past that it would eventually be feasible to indefinitely extend the
mechanistic endeavour to the point of programming a machine capable of completely
replacing humans in doing mathematics (this was roughly Hilbert’s program).

In pre-Gödel times it was thought by some that it would probably be possible to
carry this programme to such a point that all the intuitive judgments of
mathematics could be replaced by a finite number of these rules. The necessity for
intuition would then be entirely eliminated. In our discussions, however, we have
gone to the opposite extreme and eliminated not intuition but ingenuity, and this
in spite of the fact that our aim has been much the same direction. (Turing 1939)

What stems from the incompleteness theorems is that

1) there is no enumeration of all the possible axioms of mathematics that can be
recognised as such;

2) furthermore, the Turing theorem (itself a version of the incompleteness theorem for
theoretical computer science) ensures that it is not possible to build a machine that
decides in advance whether there is or there is not a proof of a given statement (for all
statements).



The need for intuition

As a consequence, even if it turns out to be possible to replace ingenuity with good
mechanical programming, it is not in practice possible to circumvent the role of intuition.
Indeed, intuition remains a fundamental component in mathematical practice for

1) perceiving the truth of axioms and the correctness of definitions;

2) perceiving that a proof of a statement exists if it does or does not exists if it does not.

In our example,

1) Even if we can program a machine that, say, finds a proof-tree starting from the axiom
that expresses the meaning of “being smaller than” down to a < b → a2 < b2, the
machine is not understanding what it really means “to be smaller than”. The machine
was just hard-wired the axiom ∀x, y(x < y → x2 < y2) as a legal move in this abstract
proof-tree-building game. On the contrary, most mathematicians introspectively
perceive the meaning of “being smaller than” based on the mental representation of
numbers as being on an imaginary line one after another.

2) We knew in advance that there was a proof of a < b → a2 < b2. It follows that a
suitably programmed machine would eventually find it for good. However, if we are
presented with another statement (of which we do not know whether there is a proof or
not), then a similarly programmed machine would eventually find a proof of the
statement only if there is indeed a proof of the statement. On the contrary, if no such
proof exists, the machine will go on building tree after tree indefinitely, never returning
an answer.



The simplest spatial model for arithmetical intuition

One could easily argue that the truth of our definition of “being smaller than”,
a < b → ∃z(a + z = b), ultimately rests on the correctness of our introspective
representation of numbers as resting on a line separated by magnitudes (or distances) which
themselves can be made to correspond to numbers on the line. In such representation

I “being smaller than a” means “being on the left with respect to a”;

I 0 is the unique magnitude that if added to another quantity corresponds to not moving
on the line;

I “adding c to a” thus means moving from a to the right of distance c, while
“subtracting c from a” means moving from a to the left of distance c.

+0

−2
+3

Second analogy: According to the mental number line account of number representation,
numbers are represented by the mind on a horizontal line in ascending order from left to
right or from right to left depending on the subjects’ writing direction (Dehaene et al.
1993). Furthermore, this faculty of representation would be innate and linked to specific
areas of the brain connected to the processing of spatial coordinates (Umiltà, Priftis and
Zorzi, 2009).



Turing’s proposal

However, how is it possible to mechanize (and thus understand precisely) the general
concept of intuition? Let us examine briefly the mature Turing’s proposal:

In the process of trying to imitate an adult human mind we are bound to think a
good deal about the process which has brought it to the state that it is in [...]
Instead of trying to simulate an adult mind, why not rather try to produce one
which simulates the child’s? If this [machine] were then subjected to an
appropriate course of education one would obtain the adult brain. [...] We have
thus divided our problem into two parts. The child-programme and the education
process. [...] It can also be maintained that it is best to provide the machine with
the best sense organs that money can buy, and then teach it to understand and
speak English. This process could follow the normal teaching of a child. Things
would be pointed out and named, etc. (Turing 1950)

Turing, very ahead of his time, was here promoting the development of (embodied)
cognitive models of the human mind: since – as we have seen – there is no way to
circumvent the need for intuition by other means, the obvious step for imitating the human
mind is trying to give a machine “the best sense organs that money can buy”: make it into
a closer model of the body!

Third analogy: Cognitive embodied accounts of knowledge as emerging in connection
with our perceptual and motor systems including (but not limited to) perception of
movement and body shapes. In particular, mathematics is a mental creation that evolved
from our manyfold practice with objects of the world (Lakoff and Nuñez 2000).



The value of introspection

As we have seen three different modes of reasoning on mathematical practice lead to very
similar conclusions about intuition:

I Introspection of one’s own mathematical practice (Hadamard, Poincaré, Turing).

I Empirical results about other people’s mathematical practice (Dehaene, Nuñez,
Lakoff).

I Theoretical results on mathematical practice in general (Gödel, Turing).

Empirical results

Objective

Theory

Subjective

Introspection

Introspective accounts of mathematical practice – especially when congruent
with theoretical findings – should be valued more when dealing with higher

mathematics, for in this context empirical research may not be feasible.

I Very few people have a sufficient understanding of higher mathematics.

I Even fewer have a sufficient understanding of higher mathematics AND are willing and
sufficiently skilled in empirical psychology to design and perform tests on others.
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